キウイフルーツ '静岡ゴールド'の育成とその特性

村上 覚¹⁾·種石始弘²⁾·鈴木公威³⁾·加藤光弘¹⁾

1農林技術研究所果樹研究センター、2農林技術研究所伊豆農業研究センター、3病害虫防除所

Breeding of a New Kiwifruit Cultivar 'Shizuoka Gold' and its Characteristics

Satoru Murakami¹⁾, Motohiro Taneishi²⁾, Kimitake Suzuki²⁾ and Mitsuhiro Kato¹⁾

Abstract

We bred the good-tasting kiwifruit cultivar 'Shizuoka Gold,' which enables it to sell in the Christmas season. Sugar content of the 'Shizuoka Gold' fruit was more than 17 Brix its citric acid levels were 1.2%. The fruits have an excellent balance of sugar and citric acid. The harvesting period was from early to mid-October and occurred about 3 weeks after the Rainbow Red' harvest time. Because 'Shizuoka Gold' can be stored for longer than the Rainbow Red,' Shizuoka Gold' fruit could be sold during the Christmas season. Disbudding time of 'Shizuoka Gold' was shorter than that of Rainbow Red', because the flower number was lesser than that of Rainbow Red.' The bacterial canker (strain Psa3) resistant ability of 'Shizuoka Gold' was stronger than that of Rainbow Red'. Therefore, 'Shizuoka Gold' is a promising cultivar that can be shipped during the Christmas season, which follows the Rainbow Red' season.

キーワード:キウイフルーツ,貯蔵性,摘らい, Psa3

I緒 言

静岡県のキウイフルーツ栽培は 1970 年に伊豆地域で始 まって以降,1970 年代後半から 1980 年代にカンキツか らの転換作物として県内全域に広がった¹⁹.2016 年時点 では全国 5 位となる 122ha が栽培されており⁹,特産品 目の一つとなっている.栽培が始まって間もなくはニュ ージーランドから導入された果肉が緑色である'ヘイワ ード'がほとんどを占めていたが,2002 年以降は富士市 (旧富士川町)の小林利夫氏が導入した'レインボーレ ッド'の産地化が進められている.

・レインボーレッド、は果肉の一部が赤く、食味も良好であるため、消費者に人気がある品種である。一方で 追熟しやすく長期貯蔵が困難であるため、果実の需要が 多い年末年始に出荷が難しい.また、花数が多いため、 短期間で行う必要がある摘らい作業に多大な労力を要す る.さらに、2014年に県内で初確認されて以降、県内全 域で発生が確認されているキウイフルーツかいよう病 Psa3 に著しく弱い²⁰. このように, 'レインボーレッ ド'には主力品種の'ヘイワード'と比べて短所もある. そこで,果樹研究センターでは良食味で年末年始に出 荷可能で,かつ摘らい作業の省力化をねらい花数が少な いことを目標に品種開発を進めてきた. その結果, 2014 年に '静岡ゴールド'を育成し, 2018 年に品種登録され た⁷⁰. ここでは,その育成経過と特性について報告する.

Ⅱ 材 料 及 び 方 法

'静岡ゴールド'の育成経過

(静岡ゴールド、の育成経過を図1に示した.2003年 に 'レインボーレッド'の偶発実生を播種した.生育し た 100 個体から収穫期が遅く,食味が良好で,花数が少 ない点を重視し,3系統を選抜した.2011年以降からは 静岡県内の3 圃場で現地試験を開始し,その結果1系統

図1 '静岡ゴールド'の育成経過

を選抜した.現地試験の結果,有望性が確認されたため, 2014年に (静岡ゴールド) と命名し,育成を完了した.

'静岡ゴールド'の果実特性

果実品質の調査は、2015~2017年にかけ、静岡県果樹 研究センター茂畑ほ場で行った.調査樹は2015年時点で 4年生であった.果実品質は、追熟前と追熟後に果肉硬度、 糖度、クエン酸含量について調査した.果肉硬度は果実 硬度計(KM-5(収穫時)KM-1(追熟後),(株)藤 原製作所)を用い、赤道部を1果につき2回測定した. 果実硬度計の貫入部は円錐型で基部の直径は12mmであ った.糖度とクエン酸含量は、赤道部の果肉をホモジナ イズした後、5000 rpmで10 min遠心分離し、その上澄 み液について調査した.糖度はデジタル糖度計(DBX -55A,(株)アタゴ)で測定し、クエン酸含量は0.1 N NaOHを用いて滴定酸度を測定した後、その値をクエン 酸含量に換算した.1回の調査につき10果ずつ調査した. 果実の特性調査は、品種登録審査基準に準じ、2017年に 行った.

'静岡ゴールド'の収穫適期

(静岡ゴールド)の収穫適期を明らかにするため、樹上における果実品質の推移及び収穫日別の果実品質について調査した.果樹研究センター茂畑ほ場において、それぞれ5年生の(静岡ゴールド)、(レインボーレッド)、(ヘイワード)の樹上における果実品質の推移を調査した.2016年9月6日から11月25日まで9~11日おきに果実を採取し、採取後直ちに果肉硬度、糖度、クエン酸含量を測定した. (静岡ゴールド)は9月6日から11月4日、(ヘイワード)は10月26日から11月25日までそれぞれ調査した.1回の調査につき、1品種10果ずつ調査した.

(静岡ゴールド)の収穫日別の果実品質の調査は、果 樹研究センター茂畑ほ場で、6年生樹より収穫した果実に おいて行った.2017年9月26日、10月4日、10月11 日、10月18日、10月30日、11月7日に収穫した.エ チレン処理は 100ppm, 24 時間, 20℃で行ない, その後 20℃で追熟した. 追熟完了は果肉硬度 0.5kg となった日 を目安とした. 追熟日数, 追熟前及び追熟後の果実品質 (果肉硬度, 糖度, クエン酸含量) について調査した. 1 回の調査につき 10 果ずつ調査した.

(静岡ゴールド)の貯蔵性及び追熟特性

(静岡ゴールド)の貯蔵性を明らかにするため、大型 冷蔵貯蔵庫内での果実品質の推移を継時的に調査した. 比較として、 (レインボーレッドも調査した.) (中ルド)は2017年10月19日、 (レインボーレッド)は 9月25日にそれぞれ露地栽培の6年生樹から収穫した. 収穫後直ちに2~3段でプラスチックコンテナ(60cm× 40cm×20cm)に詰め、0.02mmのポリフィルムで被覆し、 5℃に設定した大型冷蔵貯蔵庫内で貯蔵した.貯蔵期間中 は定期的に軟腐病等の罹病果は取り除いた.収穫後第4、 8、13週にそれぞれ果肉硬度、糖度、クエン酸含量を調 査した.1回の調査につき10果ずつ調査した.

'レインボーレッド'においては、弾性指標は収穫適 期~可食時まで7段階の熟度指標として活用できること が報告されている 5. そこで、エチレン処理後に経時的 に弾性指標を測定し、その推移から '静岡ゴールド'の 追熟特性を明らかにした.比較として、 'レインボーレ ッド'及び'ヘイワード'においても同様に調査した. エチレン処理は 100ppm, 24 時間, 20℃で行なった. そ の後、23℃に設定した恒温器内で追熟させ、0~2 日おき に果肉硬度を弾性指標として非破壊で計測した.弾性指 標は第 2 共鳴周波数を用い,以下の式で算出した. EI (fnm) =Hz²・m²³ EI:弾性指標 Hz:共鳴周波数 m: 果実重¹⁾ 調査できなかった日の弾性指標について は、その前後の中間値で推定した. 'レインボーレッ ド'は成熟ステージと弾性指標との関係が明らかとなっ ており 5),そのデータに基づき,流通~食べ頃期間(弾 性指標 12.1~18.9), 食べ頃~過熟期間 (弾性指標 4.9~ 12.1)を推定した、1品種につき8果ずつ調査した、

'静岡ゴールド'による摘らい作業の省力化

果樹研究センター(静岡市清水区茂畑)の '静岡ゴー ルド'及び 'レインボーレッド'8 樹 (6 年生 露地栽 培)を用いた.調査内容は,側枝1m当たりの着花発芽 枝数,発芽枝当たりの中心花数及び側花数,摘らい時間 とした.発芽枝当たりの中心花及び側花数は2017年4月 19 日に,発芽枝数は4月21日に調査した.摘らいは慣 行どおり側花を全て除き,中心花を3~5花とした.摘ら い時間は,4月21,24,25日に被験者8名(20代男性4

表 1	'静岡ゴ―ルド'	及び他2	品種の追執後の果実品質	(2015~2017 年の平均値)
		X0162	加注》,但《汉》不不旧只	

日括	果実重(g)	追熟後果実品質			
口口个里		果肉硬度(kg)	糖度	クエン酸含量(%)	
'静岡ゴールド'	86	0.6	17.5	1.20	
'レインボーレッド'	92	0.4	19.0	0.70	
<u> </u>	101	0.6	15.6	1.56	

² 1回の調査につき10果調査

図2 '静岡ゴールド'の果実

図3 (静岡ゴールド"の樹上における果肉硬度(A), 糖度(B), クエン酸含量(C)の推移(2016年) 異なる文字間は同一調査日において Tukey の多重比較により 5%水準で有意差あり

名,20代女性2名,30代男性1名,50代女性1名)に "静岡ゴールド"及び (レインボーレッド"を1 樹摘ら いし、側枝1m当たりの摘らい時間を算出した。

・静岡ゴールド、のキウイフルーツかいよう病 Psa3に対する抵抗性

(静岡ゴールド', 'レインボーレッド', 'ヘイワ ード'の当年生挿し木苗で真鍋ら (2017)の方法 ⁴ に準 じ接種試験を行った.キウイフルーツかいよう病菌 (Psa3 1404 株)を YP 培地で2日間振とう培養後,約1 ×10⁷cfu/ml に調整した菌液を用いた.菌の接種は、上位 5 葉を対象に,注射針 (テルモ社製 26G×1/2")の先に調 整した菌液を付け,葉柄部分を付き抜けないように2度 挿した.接種した鉢は水を張ったバットにいれ、20℃の インキュベータ (16 時間日長) に静置した.菌接種後,約7日間隔で接種した5葉について,発病(葉の萎凋、 枯れ込み、離脱)を調査し、株ごとに発病葉率を算出し た.各品種3反復ずつ行った.

山 結 果

'静岡ゴールド'の果実特性

"静岡ゴールド"の果実品質を 'レインボーレッド' 及び 'ヘイワード'と比較した(表 1). '静岡ゴール ド'の果実重は 'レインボーレッド'とほぼ同程度であ り, 'ヘイワード'より小さい. '静岡ゴールド'の追 熟後の果実品質をみると,糖度は 'レインボーレッド' よりやや低いものの 'ヘイワード'より高く, クエン酸 含量は 'レインボーレッド'より高いものの 'ヘイワー ド'より低かった.

(静岡ゴールド)の果実の外観及び断面を図 2 に示す. 果実の形は楕円,果実中央部の横断面の形は扁円,果頂 部の形はやや突出している.果皮の色は淡褐,外果皮及 び果心の色は黄色である.

表2 (静岡ゴールド)における収穫日の違いが追熟日数及び果実品質に及ぼす影響(2017年)

山田田口	思生(m) エチレン		追熟	、白古山口米6-2	収穫時果実内容		追熟後果実内容			
川又不要 口	木夫里(8	"処理日	完了日	迫熱日쮫	糖度(Brix)	果肉硬度(kg)	クエン酸含量(%)	糖度(Brix)	果肉硬度(kg)	クエン酸含量(%)
9月26日	$79a^z$	10月4日	10月13日	9	6.5cd	3.0a	1.89ab	17.3	0.5	1.03ab
10月4日	70ab	10月5日	10月16日	11	6.4d	2.7abc	2.12a	16.9	0.4	1.15a
10月11日	72ab	10月12日	10月19日	7	7.0cd	2.9ab	1.83b	17.1	0.5	0.98b
10月18日	71ab	10月19日	10月30日	11	9.1c	2.7bc	1.88ab	17.7	0.4	1.06ab
10月30日	77ab	10月31日	11月6日	6	12.5b	2.6c	1.71bc	18.3	0.5	1.02ab
11月7日	68b	11月8日	11月14日	6	15.9a	1.8d	1.55c	17.6	0.5	1.13ab
分散分析"	**	_	-	-	**	**	**	n.s.	n.s.	*

²異なる文字間にはTukeyによる多重比較により5%水準で有意差あり

^y **は1%水準で,*は5%水準で有意差あり, n.s.は5%水準で有意差なし(果実重 n=20, その他は n=10)

図5 12月28日時点における '静岡ゴールド' 及び 'レインボーレッド' の外観

'静岡ゴールド'の収穫適期

(静岡ゴールド)の樹上における果肉硬度,糖度,ク エン酸含量の推移を図3に示した.(静岡ゴールド)の 果肉硬度は、レインボーレッド)と比べ9月中旬以降高 く推移する傾向を示し, (ヘイワード)と比べ10月下旬 以降低く推移していた.(静岡ゴールド)の糖度は、レ インボーレッド)と比べ9月中旬以降低く推移し, (ヘ イワード)と比べ10月下旬以降高く推移していた.(静 岡ゴールド)のクエン酸含量は、レインボーレッド)と 比べ10月下旬以降低く推移し, (ヘイワード)と比べ 10月下旬以降高く推移していた.

(静岡ゴールド)の収穫日別の果実品質を表 2 に示した. 追熟日数は、収穫日が 10 月 30 日以降になると短くなる傾向を示した. 果実重は,一部で差がみられたものの,収穫日の違いは判然としなかった. 追熟前の果実品質は、収穫日が遅くなるほど果肉硬度及びクエン酸含量が低下し,糖度は高くなる傾向を示した. 追熟後の果実

品質は、収穫日の違いで果肉硬度及び糖度に差はみられ なかった. クエン酸含量は 10 月 11 日収穫で低下したも のの、収穫日の違いは判然としなかった.

(静岡ゴールド)の貯蔵性及び追熟特性

貯蔵期間中のコンテナ内の平均気温は 5.8℃, 平均湿度 は 95%であった. 貯蔵期間中の果肉硬度は, '静岡ゴー ルド'は'レインボーレッド'よりも高く推移しており, '静岡ゴールド'では貯蔵 13 週後も 0.5kg 以上であった (図 4). 貯蔵期間中の糖度は, '静岡ゴールド'と'レ インボーレッド'の間で差はみられなかった. 貯蔵期間 中のクエン酸含量は, '静岡ゴールド'は'レインボー レッド'よりも高く推移していた. 'レインボー レッド'よりも高く推移していた. 'レインボーレッ ド'では 12 月 28 日時点で, 90%以上の果実で果実の水 分が抜けていわゆる「しなび」が発生していたのに対し, '静岡ゴールド'は数果みられた程度あった(図 5).

エチレン処理後の経時的な弾性指標の推移をみると, いずれの品種も特に 20 Hz²・m²³·10⁶ までは急激に低下 したが,それ以下では緩慢に低下していった(図 6).流 通~食べ頃期間は品種間による差はみられなかったが, 食べ頃~過熟期間は'静岡ゴールド'は'ヘイワード' と同等であり, 'レインボーレッド'よりも長かった (表 3).

(静岡ゴールド)による摘らい作業の省力化

着花発芽枝数は '静岡ゴールド'と 'レインボーレッ ド'で差はみられなかった (表 4). 花数は中心花, 側花 ともに '静岡ゴールド'は 'レインボーレッド'に比べ

図 0 静岡コールト , レインホーレット 及び ハイ ワード'におけるエチレン処理後の果肉硬度(弾性 指標)の推移(2016年)

て少なかった. '静岡ゴールド'の側枝 1m 当たりの摘 らい時間は 55 秒で, 'レインボーレッド'の 146 秒と比 べて約 1/3 で少なかった(表 4).

・静岡ゴールド、のキウイフルーツかいよう病 Psa3に対する抵抗性

・レインボーレッド、は菌接種 8 日後からすべての株で葉の発病が確認され、平均発病葉率が 100%であった (図 7). '静岡ゴールド'は 14 日後から葉の萎凋が確認され、34 日後で判断すると平均発病葉率は約 60%であった. ・ヘイワード'は菌接種 22 日後に萎凋が初めて観察され、平均発病葉率は 20%と最も低かった.

IV 考 察

'静岡ゴールド'の追熟後の果実品質をみると,糖度は 'ヘイワード'と比べると高く, 'レインボーレッ

表3 キウイフルーツ3品種における流通~食べ頃 及び食べ頃~過熟期間の推定

品種	流通~食べ頃期間 [*] (日)	食べ頃~過熟期間 ⁹ (日)
'静岡ゴールド'	1.4	$5.4a^{x}$
'レインボーレッド'	1.8	3.4b
'ヘイワード'	1.7	6.7a
分散分析 ["]	n.s.	**
* 弾性指標で12.1~	~18.9の範囲であった日数	, Z

″弾性指標で4.9~12.1の範囲であった日数

* 異なる文字間にはTukeyの多重比較により5%水準で有意差あり

** は1%水準で有意差あり、n.s.は5%水準で有意差なし(n=8)

表4 '静岡ゴールド'と 'レインボーレッド'の着花 発芽枝数,花数及び摘らい作間の比較(2017年)

口插	着花発芽枝数"	花狮	摘らい時間	
口口 1 里		中心花	側花	(秒)
'静岡ゴールド'	13.7	4.8	0.9	55
'レインボーレッド'	14.3	6.7	5.2	146
t検定 ^x	n.s.	**	**	**

² 側枝1mあたり

^y 発芽枝あたり

**は1%水準で有意差あり, n.s.は5%水準で有意差なし

図7 キウイフル―ツ3品種における接種試験によるキウ イフル―ツかいよう病 Psa3 抵抗性検定(2017年)

ド'とほぼ同等であった(表1).クエン酸含量は'ヘイ ワード'に比べて低いものの, 'レインボーレッド'よ り高かった. 'レインボーレッド'の食味は良好である ものの一部の消費者からは酸味が足りないという意見が あり,一方で'ヘイワード'は酸味が強すぎるという意 見が根強い.このことから'静岡ゴールド'は糖酸のバ ランスに優れた食味の良好な品種といえる.

果実重は、 'レインボーレッド' とほぼ同等で 'ヘ イワード' と比べると小さい (表 1) . 収量は 'ヘイワー ド' で 10a 当り約 3t といわれるのに対し ¹¹⁾ 、 'レイン ボーレッド' は約 2t といわれている. 単純に果実重から 収量を直接評価できないものの、 '静岡ゴールド' の収 量は 'レインボーレッド' とほぼ同等、 'ヘイワード' より少ないことが想定される. 本研究で調査対象とした のは、一般的に成木とされる 8 年生以上の樹ではなく、 本格的な収量調査はできていないものの、このことにつ いては、栽培上の短所となる可能性がある. キウイフルーツの収穫時期は、樹上での糖度で判断 することが多く、 'ヘイワード'では 11 月中旬以降に Brix が 7 程度で収穫するのが一般的である³. 'レイン ボーレッド'においては 9 月中~下旬に Brix が 7~9 に 到達した時期に収穫するのが適期といわれている⁶.

'静岡ゴールド'の樹上における糖度の推移をみると, 'レインボーレッド'より約3週間遅い10月上中旬に Brixが7~9に到達しており、その時期が収穫適期と考え られた(図3).一方で、'ヘイワード'では収穫時期は 年により2週間程度前後するといわれており¹³⁾, '静岡 ゴールド'もある程度は年次間差を考慮する必要がある と考えられる.また、'静岡ゴールド'の貯蔵性をみる と,果肉硬度は 'レインボーレッド'と比べると高く推 移しており、貯蔵13週後の1月19日においても食べ頃 の目安となる果肉硬度0.5kg以上を維持していた(図4). 収穫時期と貯蔵性から判断すると、'静岡ゴールド'は 目標どおり年末年始まで販売できると考えられた.

桜井(2004)は、エチレン処理後のキウイフルーツに ついて本研究で実施したのと同様の手法で果肉硬度を非 破壊でモニタリングしており、追熟初期は急激に軟化が 進み、その後緩慢になることを報告している¹⁰⁰.本研究 においても、いずれの品種も 20 Hz²・m²³·10⁶ までは急 激に低下したが、それ以下では緩慢に低下し、桜井の報 告とほぼ同様の傾向を示した(図 6).一方で食べ頃~過 熟期間に当たる弾性指標 4.9~12.1 の期間は品種により差 がみられ、 '静岡ゴールド'は 'ヘイワード'と同等で、 'レインボーレッド'に比べて長かった(表 3).このこ とは '静岡ゴールド'は (地相持ち期間が比較的長いことを 示しており、 '静岡ゴールド'は 'レインボーレッド' に比べて販売面で有利になることが期待できる.

(静岡ゴールド)の着花特性をみると、 (レインボー レッド)に比べて中心花及び側花ともに少なかった(表 4).実際に摘らいの作業時間を比較すると、 (静岡ゴー ルド)は、レインボーレッド)に比べて1/3程度となっ た(表4).キウイフルーツの摘らい作業は、開花までの 約2週間で完了させなければならない作業である.特に (レインボーレッド)は、花数が非常に多いため煩雑な 作業であり、10a当り70~80時間と推察されている.ま た、静岡県のキウイフルーツ栽培では、お茶と兼業して いる生産者も多く、その時期はちょうどお茶の収穫時期 と重なるため、摘らい作業の省力化は課題であった.こ のことから、 (静岡ゴールド) は特にお茶と兼業してい る生産者にとっては有利に働く可能性がある.

静岡県のキウイフルーツ産地では 2014 年以降, かいよう病 Psa3 が発生し, 特に 'レインボーレッド' は甚大な

被害を受けている. Psa3 は品種により抵抗性が異なるこ とが報告されており、 'レインボーレッド' は他品種に 比べて罹病しやすい². '静岡ゴールド' の Psa3 に対す る抵抗性をみると、 'ヘイワード' に比べれば弱いもの の、 'レインボーレッド' に比べれば強かった(図7). このため、 '静岡ゴールド' は Psa3 発生園地においても 栽培できる可能性があり、このことは栽培上の長所と考 えられる.

以上の結果,年末年始に出荷可能で良食味であるキウ イフルーツ '静岡ゴールド'を育成した. '静岡ゴール ド'の果実は,糖酸のバランスに優れ,食味は良好であ る. 収穫時期は 10 月上中旬であり,貯蔵性は 'レインボ ーレッド'よりも優れるため,年末年始に出荷可能であ る. また,着花数が少ないため, 'レインボーレッド' に比べて摘らい作業時間は 1/3 程度に短縮され,かいよ う病 Psa3 に対する抵抗性は 'レインボーレッド'に比べ て強いといった,栽培上の長所もある. これらのことか ら, '静岡ゴールド'は 'レインボーレッド'に続く年 末年始出荷用品種として有望であると考えられた.

Ⅴ 摘 要

年末年始に出荷可能で良食味であるキウイフルーツ '静岡ゴールド'を育成した. '静岡ゴールド'の果実 は Brix 糖度が 17 以上と高い一方で,クエン酸含量は 1.2%と比較的多いため,糖酸のバランスに優れ,食味は 良好である. '静岡ゴールド'の収穫時期は 10 月上中旬 で 'レインボーレッド'よりも約 3 週間遅く,貯蔵性は 'レインボーレッド'よりも約 3 週間遅く,貯蔵性は 'レインボーレッド'よりも優れる. さらに食べ頃~過 熟期間は 'レインボーレッド'に比べて長いことから, 年末年始においても出荷可能であると考えられた. 着花 数が少ないため, 'レインボーレッド'に比べて摘らい 作業時間は 1/3 程度になる.また,近年問題となってい る Psa3 に対する抵抗性は 'レインボーレッド'に比べて 強い. これらのことから, '静岡ゴールド'は 'レイン ボーレッド'に続く年末年始出荷用品種として有望であ ると考えられた.

引用文献

 Cooke, J.R.(1972): An interpretation of the resonant behavior of intact fruit and vegetables. Trans. ASME. 15, 1075~1080.

- 2) 濱野康平・水谷亮介・生咲 巌・福田哲生・真鍋徹 郎・大谷 衛(2017):休眠枝を用いた有傷接種に よるキウイフルーツ Psa3 系統に対する各品種の抵抗 性評価. 園学研,別2,164.
- 3) 牧田好高・甘 長飛(1992): キウイフルーツの収 穫時の熟度が貯蔵性ならびに果実品質に与える影響.
 静岡柑試研報, 24, 15~24.
- 4) 真鍋徹郎・生咲 巌・遠藤温子・水谷亮介・福田哲 生・濱野康平・大谷 衛(2017):ポット苗における キウイフルーツかいよう病 Psa3 系統の有傷接種後の 低温遭遇が各品種の発病に及ぼす影響,園学研,16 別2,163.
- 5) 村上 覚・神谷健太・佐々木俊之(2017): キウイフ ルーツ 'レインボーレッド' における弾性指標による 熟度の評価. 園学研, 16 (1), 89~93.
- 6) 村上 覚(2013):優良新系統のつくりこなし方 レインボーレッド、農業技術体系 果樹編 5キウイ フルーツ,基78の1の2~基78の1の9.

- 村上 覚・鈴木公威・種石始弘(2018):静岡ゴー ルド.品種登録26563号.
- 永田賢嗣・栗原昭夫・間苧谷 徹(1984): キウイ フルーツの収穫適期と貯蔵法について.果樹試報 E, 5,9~18.
- 9) 農林水産省(2017):平成 28 年産 果樹生産出荷統
 計 キウイフルーツ, https//www.e-stat.go.jp/dbview?
 sid=003216126.
- 10) 桜井直樹(2004):果実の硬さで食べ頃・採り頃を知る 技術.農業および園芸, 79, 1286~1292.
- 11) 静岡県 (2010) : 農業技術原単位 2010 キウイフル ーツ.
- 12) 静岡県落葉果樹振興協会(2001):静岡県の落葉果 樹の歴史と産地. p38~41.
- 13) 末澤克彦・福田哲生 (2008) : キウイフルーツの作業便利帳 個性的品種をつくりこなす. p100~12