[成果情報名]局所カーテンで夜間冷房および暖房のエネルギーが約37%削減できる。

[要約] ヒートポンプを用いて夏季に20 の夜間冷房を行う場合、また冬期の暖房時に管理作業の妨げとならない2.3mの高さで、厚さ農ビ0.075mmの局所カーテンをすることで、夜間冷房および暖房のエネルギーが約37%削減できる。

[キーワード]バラ、ヒートポンプ、夜間冷房、暖房、局所カーテン

[担当]静岡農林研・栽培技術部・施設型(花き)研究

「代表連絡先]0538-36-1555 電子メール agrisaibai@pref.shizuoka.lg.jp

[区分]関東東海北陸農業・花き

[分類]技術・参考

[背景・ねらい]

バラ栽培では、暖房費が高騰して経営を圧迫している、また、近年導入が進むヒートポンプは、夏季の夜間冷房に使用されている。冷暖房のエネルギーを削減することを目的として、 局所カーテンを用いた冷暖房費削減を行う。

「成果の内容・特徴」

- 1.バラ栽培温室の2層カーテンの下に、バラの生育と管理作業の妨げにならない高さ(2.2m)で、栽培ベッド全体を囲む局所カーテンを設置する(図1、図2)。
- 2. 局所カーテンは、厚さ0.075mmの農ビを用いる。
- 3. 局所カーテンを行った場合の冷房負荷係数は、 $3.6~W/m^2/K$ であり、局所カーテンがない場合の $5.7~W/m^2/K$ に比較して小さく、冷房エネルギーは約37%削減できる。(表 1)。
- 4.局所カーテンを行った場合の暖房負荷係数は、 $2.3~W/m^2/K$ であり、局所カーテンがない場合 $3.7~W/m^2/K$ に比較して小さく、暖房エネルギーは約38%削減できる。(表 2)。
- 5.カーテンが全くない場合の暖房負荷係数は、 $7.4~W/m^2/K~K~$ であり、2~層カーテンをすると $3.7~W/m^2/K~$ まで低くなるが、局所カーテンのみでも $3.0~W/m^2/K~$ であり、保温効果は高い。

[成果の活用面・留意点]

- 1. 局所カーテンと植物が接触すると、結露を起こすので注意する。
- 2. 局所カーテンは、冷房時、暖房時とも夜間にのみ行う。

[具体的データ]

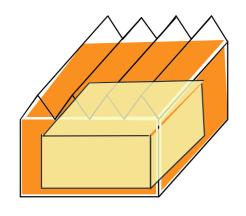


図 1 局所カーテン設置イメージ

図2 局所カーテン設置状況(内部)

表1 ヒートポンプによる夜間冷房時の温室関熱流と冷房負荷

<u></u> 局所 カーテ	最大冷房 負荷	最大負荷時 外気温	最大負荷時 室内気温	最大負荷時 内外気温差	熱貫流率	隙間換気 伝熱係数	冷房負荷 係数	地表伝 熱量	仕切り窓 伝熱量
ン	kW				$W/m^2/K$	$W/m^2/K$	$W/m^2/K$	W/m^2	W/m^2
有	20.8	27.3	19.2	8.1	2.40	1.22	3.6	13.3	21.4
無	21.1	26.5	21.3	5.3	4.37	1.38	5.8	9.2	24.7

表2 局所カーテンの有無による温室の暖房負荷係数の変化

上部2層カー	局所カーテン	暖房時 間	重油消費量	発生熱量 ^{z)}	外気温 ^{y)}	温室内気温タ)	暖房負荷 ^{x)}	暖房負荷係数 ^{w)}	平均風速
テンの有無	の有無	hr	L	kWhr			deg∙h	$W/m^2/K$	m/s
有	有	13.0	16.8	12,012	9.9	20.3	135.7	2.3	0.0
有	無	15.2	39.0	23,637	7.2	19.6	190.5	3.7	1.5
無	有	13.0	20.3	14,525	10.9	20.4	123.8	3.0	2.0
無	無	8.0	41.3	47,979	4.5	17.5	103.9	7.4	0.8

z)発生熱量=A重油発生熱量(10.2kW/L)×暖房時間×暖房システム利用効率(0.91)

[その他]

研究課題名:施設園芸における高度環境制御による高生産システムの確立

予算区分:県単

研究期間: 2007~2008年

研究担当者: 佐藤展之、守谷栄樹(中部電力(株))、安井清登(三菱重工空調システム(株))、野々

下知泰(ネポン(株))

y)暖房時間帯平均温度 x)暖房負荷=(温室内気温-外気温)×暖房時間

w)暖房負荷係数=発生熱量/(温室内気温-外気温)/温室表面積(504.4m)